www.egwald.com Egwald Web Services

Egwald Web Services
Domain Names
Web Site Design

Egwald Website Search JOIN US AS A FACEBOOK FAN Twitter - Follow Elmer WiensRadio Podcasts - Geraldos Hour

 

Statistics Programs - Econometrics and Probability Economics - Microeconomics & Macroeconomics Operations Research - Linear Programming and Game Theory Egwald's Mathematics Egwald's Optimal Control

This website is undergoing maintenance!

Egwald HomeMathematics HomeLinear Algebra HomeGeometry HomeOptimal ControlOperations Research HomeLinear Programming Home  PageGame Theory Home  PageStatistics Home  PageNonlinear Dynamics HomeReferences & Links
 

Egwald Mathematics: References and Links

Linear Algebra, Geometry, Optimal Control Theory,
Operations Research, Statistics and Econometrics,
Nonlinear Dynamics

by

Elmer G. Wiens

Egwald's popular web pages are provided without cost to users.
Please show your support by joining Egwald Web Services as a Facebook Fan: JOIN US AS A FACEBOOK FAN
Follow Elmer Wiens on Twitter: Twitter - Follow Elmer Wiens

Egwald Mathematics - Linear Algebra
References and Links

  • Apostle, Tom M. Calculus, Vol. 1. New York: Blaisdell, 1962.
  • Ayres, Fran Jr. Matrices. New York: Schaum McGraw-Hill, 1962.
  • Ayres, Fran Jr. Modern Algebra. New York: Schaum McGraw-Hill 1965.
  • Bretscher, Otto. Linear Algebra with Applications. Upper Saddle River: Prentice Hall, 1997.
  • Burden, Richard L. and J. Douglas Faires. Numerical Analysis, 6th Ed. Pacific Grove: Brooks/Cole, 1997.
  • Cohn, P. M. Linear Equations. London: Routledge, 1964.
  • Cohn, P. M. Solid Geometry. London: Routledge, 1961.
  • Cutnell, John D. and Kenneth W. Johnson. Physics. 3rd ed. New York: John Wiley, 1995.
  • Dowling, Edward T. Mathematics for Economists. New York: Schaum McGraw-Hill, 1980.
  • Herstein, I. N. Topics in Algebra. New York: Blaisdell, 1964.
  • Hock, Kai Meng and Andrzej Wolski. "Time evolution of coupled-bunch modes from beta function variation in storage rings". Physical Review Special Topics - Accelerators and Beams. 10, 084401 (2007).
  • Lipschutz, Seymour. Linear Algebra. New York: Schaum McGraw-Hill, 1968.
  • Mal'cev, A. I. Foundations of Linear Algebra. Trans. San Francisco: Freeman, 1963.
  • Spiegel, Murray R. Vector Analysis and an Introduction to Tensor Analysis. New York: Schaum, 1959.
  • Thomas, George B. Calculus and Analytical Geometry. Reading, Mass.: Addison-Wesley, 1960.

Egwald Mathematics - Geometry
References and Links

  • Ammeraal, Leendert. Programming Principles in Computer Graphics. 2nd ed. New York: John Wiley, 1992.
  • Apostol, Tom M. Calculus. New York: Blaisdell, 1961.
  • Oakley, C. O. Analytic Geometry. New York: Barnes and Noble, 1957.
  • Thomas, George B. Jr. Calculus and Analytic Geometry. 5th ed. Reading, Mass.: Addison-Wesley, 1966.
  • Vance, Elbridge P. Trigonometry. Reading, Mass.: Addison-Wesley, 1954.

Egwald Mathematics - Optimal Control
References and Links

  • Boltyanski, V. G. Mathematical Methods of Optimal Control. Trans. K. N. Trirogoff. New York: Holt, 1971.
  • Bryson, Arthur and Yu-Chi Ho. Applied Optimal Control. New York: Wiley, 1975.
  • Burmeister, Edwin, and Dobell, Rodney. Mathematical Theories of Economic Growth. New York: Macmillan, 1970.
  • Clark, Colin W. and Gordon R. Munro, "The Economics of Fishing and Modern Capital Theory: A Simplified Approach," Journal of Environmental Economics and Management. 2 (1975): 92-106.
  • Harris, Richard G. and Elmer G. Wiens. "Investment in Capacity and a Normative Theory of the Dominant Public Firm." Institute for Economic Research. Kingston: Queen's University, Discussion Paper #353, 1979.
  • Hartwick, John and Nancy Olewiler. The Economics of Natural Resource Use. 2nd ed. Reading, Mass. : Addison-Wesley, 1998.
  • Hocking, Leslie M. Optimal Control: An Introduction to the Theory with Applications. Oxford: Clarendon, 1991.
  • Intriligator, Michael D. Mathematical Optimization and Economic Theory. Englewood Cliffs: Prentice-Hall, 1971.
  • Kamien, Morton and Nancy Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. New York: North Holland, 1981.
  • Leonard, Daniel and Ngo Van Long. Optimal Control Theory and Static Optimization in Economics. Cambridge: Cambridge UP, 1992.
  • Lewis, Frank L. Optimal Control. New York: Wiley, 1986.
  • Loewen, Philip D. Math 403 Lecture Notes. Department of Mathematics, University of British Columbia. 4 Apr 2003. http://www.math.ubc.ca/~loew/m403/.
  • Macki, Jack and Aaron Strauss. Introduction to Optimal Control. New York: Springer-Verlag, 1982.
  • Nagatani, Keizo. Macroeconomic Dynamics. Cambridge: Cambridge UP, 1981.
  • Neher, Philip. Natural Resource Economics: Conservation and Exploitation. Cambridge: Cambridge UP, 1990.
  • Pinch, Enid R. Optimal Control and the Calculus of Variations. Oxford: Oxford UP, 1993.
  • Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical Theory of Optimal Processes. Trans. K. N. Trirogoff. New York: Wiley, 1962.
  • Shone, Ronald. Economic Dynamics. Cambridge: Cambridge UP, 1997.
  • Takayama, Akira. Analytic Methods in Economics. Ann Arbor: U of Michigan Press, 1993.
  • Vind, Karl. "Control Systems with Jumps in the State Variables." Econometrica. 6 (1973): 273-277.

Egwald Mathematics: Operations Research
Linear Programming: References and Links

  • Budnick, Frank S., Richard Mojena, and Thomas E. Vollmann. Principles of Operations Research for Management. Homewood: Irwin, 1977.
  • Dantzig, G., A. Orden, and P. Wolfe. "The Generalized Simplex Method for Minimizing a Linear Form under Inequality Restraints." Pacific Journal of Mathematics. 8, (1955): 183-195.
  • Dantzig, George B. Linear Programming and Extensions. Princeton: Princeton U P, 1963.
  • Dorfman, R., P. Samuelson, and R. Solow. Linear Programming and Economics Analysis. New York: McGraw-Hill, 1958.
  • Hadley, G. Linear Algebra. Reading, Mass.: Addison-Wesley, 1961.
  • Hadley, G. Linear Programming. Reading, Mass.: Addison-Wesley, 1962.
  • Hillier, Frederick S. and Gerald J. Lieberman. Operations Research.. 2nd ed. San Francisco: Holden-Day, 1974.
  • Karlin, S. Mathematical Methods in the Theory of Games and Programming. Vols. I & II. Reading, Mass.: Addison-Wesley, 1959.
  • Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge UP, 1989.
  • Saaty, Thomas L. Mathematical Methods of Operations Research. New York: McGraw-Hill, 1959.
  • Sierksma, Gerard. Linear and Integer Programming: Theory and Practice. 2nd ed. New York: Marcel Dekker, 2002.
  • Sposito, Vincent. Linear and Nonlinear Programming. Ames, Iowa: Iowa UP, 1975.
  • Sposito, Vincent. Linear Programming with Statistical Applications. Ames, Iowa: Iowa UP, 1989.
  • Strang, Gilbert. Linear Algebra and Its Applications. 3rd ed. San Diego: Harcourt, 1988.
  • Restrepo, Rodrigo A. Theory of Games and Programming: Mathematics Lecture Notes. Vancouver: University of B.C., 1967.
  • Restrepo, Rodrigo A. Linear Programming and Complementarity. Vancouver: University of B.C., 1994.
  • Taha, Hamdy A. Operations Research: An Introduction. 2nd ed. New York: MacMillan, 1976.
  • Wagner, Harvey M. Principles of Management Science: With Applications to Executive Decisions. 2nd ed. Englewood Cliffs: Prentice-Hall, 1975.
  • Wagner, Harvey M. Principles of Operations Research: With Applications to Managerial Decisions. 2nd ed. Englewood Cliffs: Prentice-Hall, 1975.
  • Wu, Nesa, and Richard Coppins. Linear Programming and Extensions. New York: McGraw-Hill, 1981.

Egwald Mathematics: Operations Research
Game Theory: References and Links

  • Aumann, Robert. Collected Papers. Cambridge: MIT Press, 2000
  • Brahms, Steven J. Theory of Moves. Cambridge: Cambridge UP, 1994.
  • Dresher, Melvin. Games of Strategy: Theory and Applications. Englewood Cliffs: Prentice-Hall, 1961.
  • Karlin, Samuel. Mathematical Methods and Theory of Games, Programming, and Economics. Reading, Mass: Addison-Wesley, 1959.
  • Jackson, John B., III. Exploring The Importance Of Information Superiority To The Decision Maker. Monterey: Naval Postgraduate School, 2008.
  • Mehlmann, Alexander. The Games Afoot! Game Theory in Myth and Paradox. AMS, 2000.
  • Owen, Guillermo. Game Theory. 2nd ed. New York: Academic, 1982.
  • Rapoport, Anatol. Two-Person Game Theory: The Essential Ideas. Ann Arbor: U Michigan, 1966.
  • Rapoport, Anatol. N-Person Game Theory: Concepts and Applications. Ann Arbor: U Michigan, 1970.
  • Restrepo, Rodrigo A. Theory of Games and Programming: Mathematics Lecture Notes. Vancouver: University of B.C., 1967.
  • Taylor, Alan D. and William S. Zwicker. Simple Games. Princeton: Princeton UP, 1999.
  • Thomas, L. C. Games, Theory and Applications. New York: John Wiley, 1984.
  • Weirich, Paul. Equilibrium and Rationality. Cambridge: Cambridge UP, 1998.
  • Wiens, Elmer G. Reduction of Games Using Dominant Strategies. Vancouver: UBC M.Sc. Thesis, 1969.
  • von Neumann, John and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton: Princeton UP, 1944.

Egwald Mathematics: Statistics
Probability and Stochastic Processes: References and Links

  • Billingsley, Patrick. Convergence of Probability Measures. New York: John Wiley, 1968.
  • Bulmer, M. G. Principles of Statistics. Edinburgh: Oliver & Boyd, 1965.
  • Chow, Y. S., Herbert Robbins and David Siegmund. Great Expectations: The Theory of Optimal Stopping. New York: Houghton Mifflin, 1971.
  • DeGroot, Morris H. Optimal Statistical Decisions. New York: McGraw-Hill, 1970.
  • Freund, John E. and Frank J. Williams. Modern Business Statistics. Englewood Cliffs, N.J.: Prenctice-Hall, 1958.
  • Freund, John E. Mathematical Statistics. Englewood Cliffs, N.J.: Prenctice-Hall, 1962.
  • Grimmett, Geoffrey and David Stirzaker. Probability and Random Processes. 3rd ed. Oxford: Oxford UP, 2001.
  • Hodges, J.L., Jr. and E.L. Lehmann. Basic Concepts of Probability and Statistics. San Francisco: Holden-Day, 1964.
  • Karlin, Samuel. A First Course in Stochastic Processes. New York: Academic Press, 1966.
  • Lee, Peter M. Bayesian Statistics: An Introduction. 2nd ed. Arnold: London, 1997.
  • Rice, John A. Mathematical Statistics and Data Analysis. 2nd ed. Belmont, CA: Duxbury, 1995.
  • Winkler, Robert L. An Introduction to Bayesian Inference and Decision. New York: Holt, Rinehart and Winston, 1972.

Egwald Mathematics: Statistics
Statistics and Econometrics: References and Links

  • Johnston, J. Econometric Methods. 2nd ed. St. Louis: McGraw-Hill, 1972.
  • Lee, Peter M. Bayesian Statistics: An Introduction. 2nd ed. London: Arnold, 1997.
  • Leser, C. E. V. Econometric Techniques and Problems. New York: Hafner, 1966.
  • Theil, Henri. Principles of Econometrics. New York: John Wiley, 1971.
  • Weisberg, Sanford. Applied Linear Regression. 2nd ed. New York: John Wiley, 1985.

Egwald Mathematics: Statistics
Numerical Analyis: References and Links

  • Burden, Richard L. and J. Douglas Faires. Numerical Analyis. 6th ed. Pacific Grove: Brooks/Cole, 1997.
  • Demmel, James W. Applied Numerical Linear Algebra. Philadelphia: Siam, 1997.
  • Mathews, John H. and Kurtis D. Fink. Numercial Methods Using MATLAB. 3rd ed. Upper Saddle River: Prentice Hall, 1999.
  • Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge UP, 1989.
  • Watkins, David S. Fundamentals of Matrix Computations. New York: John Wiley, 1991.

Egwald Mathematics - Nonlinear Dynamics
References and Links

  • Apostle, Tom M. Calculus, Vol. 1. New York: Blaisdell, 1962.
  • Burden, Richard L. and J. Douglas Faires. Numerical Analysis, 6th Ed. Pacific Grove: Brooks/Cole, 1997.
  • Cohn, P. M. Linear Equations. London: Routledge, 1964.
  • Cutnell, John D. and Kenneth W. Johnson. Physics. 3rd. New York: John Wiley, 1995.
  • Demmel, James W. Applied Numerical Linear Algebra. Philadelphia: Siam, 1997.
  • Devaney, Robert L. An Introduction to Chaotic Dynamical Systems. Menlo Park, CA: Benjamin/Cummings, 1986.
  • Kaplan, Wilfred. Ordinary Differential Equations. Reading: Addison-Wesley, 1958.
  • Lipschutz, Seymour. Linear Algebra. New York: Schaum McGraw-Hill, 1968.
  • Lorenz, Hans-Walter. Business Cycle Theory. Berlin: Springer-Verlag, 1987.
  • Lorenz, Hans-Walter. Nonlinear Dynamical Economics and Chaotic Motion. Berlin: Springer-Verlag, 1989.
  • Lorenz, Hans-Walter. Nonlinear Dynamical Economics and Chaotic Motion. Berlin: Springer-Verlag, 1993.
  • Mathews, John H. and Kurtis D. Fink. Numerical Methods Using MATLAB. 3rd ed. Upper Saddle River: Prentice Hall, 1999.
  • Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge UP, 1989.
  • Strang, Gilbert. Linear Algebra and Its Applications. 3d ed. San Diego: Harcourt, 1976.
  • Strogatz, Steven H. Nonlinear Dynamics and Chaos. Cambridge MA: Perseus, 1994.
  • Thomas, George B. Calculus and Analytical Geometry. Reading, Mass.: Addison-Wesley, 1960.
  • Varah, James. Numerical Linear Algebra: Computer Science 402 Lecture Notes. Vancouver: University of B.C., 2000.
  • Watkins, David S. Fundamentals of Matrix Computations. New York: John Wiley, 1991.
 
   

      Copyright © Elmer G. Wiens:   Egwald Web Services       All Rights Reserved.    Inquiries